Spark on Fire! Integrating Pentaho and Spark

One of Pentaho’s great passions is to empower organizations to take advantage of amazing innovations in Big Data to solve new challenges using the existing skill sets they have in their organizations today.  Our Pentaho Labs’ innovations around natively integrating data engineering and analytics with Big Data platforms like Hadoop and Storm have already led dozens of customers to deploy next-generation Big Data solutions. Examples of these solutions include optimizing data warehousing architectures, leveraging Hadoop as a cost effective data refinery, and performing advanced analytics on diverse data sources to achieve a broader 360-degree view of customers.

Not since the early days of Hadoop have we seen so much excitement around a new Big Data technology as we see right now with Apache Spark.  Spark is a Hadoop-compatible computing system that makes big data analysis drastically faster, through in-memory computation, and simpler to write, through easy APIs in Java, Scala and Python.  With the second annual Spark Summit taking place this week in San Francisco, I wanted to share some of the early work Pentaho Labs and our partners over at Databricks are collaborating on to deeply integrate Pentaho and Spark for delivering high performance, Big Data Analytics solutions.

Big Data Integration on Spark

Big Data Integration on SparkAt the core of Pentaho Data Integration (PDI) is a portable ‘data machine’ for ETL which today can be deployed as a stand-alone Pentaho cluster or inside your Hadoop cluster though MapReduce and YARN.  The Pentaho Labs team is now taking this same concept and working on the ability to deploy inside Spark for even faster Big Data ETL processing.  The benefit for ETL designers is the ability to design, test and tune ETL jobs in PDI’s easy-to-use graphical design environment, and then run them at scale on Spark.  This dramatically lowers the skill sets required, increases productivity, and reduces maintenance costs when to taking advantage of Spark for Big Data Integration.

Advanced Analytics on Spark

Last year Pentaho Labs introduced a distributed version of Weka, Pentaho’s machine learning and data mining platform. The goal was to develop a platform-independent approach to using Weka with very large data sets by taking advantage of distributed environments like Hadoop and Spark. Our first implementation proved out this architecture by enabling parallel, in-cluster model training with Hadoop.

Advanced Analytics on Spark

We are now working on a similar level of integration with Spark that includes data profiling and evaluating classification and regression algorithms in Spark.  The early feedback from Pentaho Labs confirms that developing solutions on Spark is faster and easier than with MapReduce. In just a couple weeks of development, we have demonstrated the ability to perform in-cluster Canopy clustering and are very close to having k-means++ working in Spark as well!

Next up: Exploring Data Science Pack Integration with MLlib

MLlib is already one of the most popular technologies for performing advanced analytics on Big Data.  By integrating Pentaho Data Integration with Spark and MLlib, Data Scientists will benefit by having an easy-to-use environment (PDI) to prepare data for use in MLlib-based solutions.  Furthermore, this integration will make it easier for IT to operationalize the work of the Data Science team by orchestrating the entire end-to-end flow from data acquisition, to data preparation, to execution of MLlib-based jobs to sharing the results, all in one simple PDI Job flow.  To get a sense for how this integration might work, I encourage you to look at a similar integration with R we recently launched as part of the Data Science Pack for Pentaho Business Analytics 5.1.

Experiment Today with Pentaho and Spark!

You can experiment with Pentaho and Spark today for both ETL and Reporting.  In conjunction with our partners at Databricks, we recently certified for the following use cases combining Pentaho and Spark:

  • Reading data from Spark as part of an ETL workflow by using Pentaho Data Integration’s Table Input step with Apache Shark (Hive SQL layer runs on Spark)
  • Reporting on Spark data using Pentaho Reporting against Apache Shark

We are excited about this first step in what we both hope to be a collaborative journey towards deeper integration.

Jake Cornelius
Sr. Vice President, Product Management
Pentaho

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 102 other followers

%d bloggers like this: